
International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 46

Application of Windrose Analysis for Optimized Runway

Alignment in Transportation Engineering

Igbokwe, S.O.

Postgraduate Scholar, Department of Civil Engineering Technology,

Michael Okpara University of Agriculture,

Umudike, PMB 7267, Umuahia, Abia State Nigeria.

Email: igbokwesamuel6@gmail.com

Ngene B.U

Lecturer, Department of Civil Engineering Technology,

Michael Okpara University of Agriculture,

Umudike, PMB 7267, Umuahia, Abia State Nigeria.

Email: ngene.ben@mouau.edu.ng

DOI: 10.56201/ijemt.vol.11.no11.2025.pg46.54

Abstract

Runway orientation is a critical element in airport design, directly influencing safety,

operational efficiency, and aircraft performance. Improperly aligned runways can expose

aircraft to excessive crosswind components, increasing risks during takeoff and landing. This

study presents the development and application of a windrose-based software tool designed in

Python to analyze historical wind data and optimize runway orientation. Using graphical

windrose plots and computational assessment of crosswind components, the system

recommends the best runway alignment in accordance with International Civil Aviation

Organization (ICAO) standards. The tool further allows visualization of the preferred runway

on the windrose diagram, data export, and automated reporting. The findings demonstrate that

windrose analysis provides a robust framework for identifying optimal runway headings,

improving operational safety, and guiding engineers in airport master planning.

Keywords: Windrose analysis, runway orientation, crosswind, transportation engineering,

airport design, Python application

1. Introduction

The design of airport runways remains a cornerstone in transportation engineering, as it

significantly affects flight safety and operational reliability. Runways are expected to align as

closely as possible with prevailing wind directions to minimize crosswind effects on aircraft

(Horonjeff et al., 2010). Crosswinds exceeding the operational limits of aircraft can

compromise safety during takeoff and landing, leading to delays, diversions, or accidents.

International guidelines, such as those provided by the International Civil Aviation

Organization (ICAO), recommend that runways should be oriented such that at least 95% of

the time, aircraft operations are conducted within acceptable crosswind limits (ICAO, 2016).

Achieving this requires accurate collection, analysis, and interpretation of long-term wind data.

Windrose diagrams serve as an effective tool for visualizing wind speed and direction

frequencies, thereby supporting the determination of the most suitable runway orientation

(Ashford & Wright, 2011). In this study, a Python-based windrose software was developed and

applied to identify optimized runway alignments. This paper presents the design, methodology,

and implications of this approach in transportation engineering.

http://www.iiardjournals.org/
mailto:igbokwesamuel6@gmail.com

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 47

2. Literature Review

The orientation of runways has been extensively studied in aviation and transportation

engineering. Early works emphasized manual plotting of windroses to determine optimal

runway orientation (Neufville & Odoni, 2013). With the advent of computational tools,

automated approaches have gained prominence, enabling precise analysis of large wind

datasets (Stolzer et al., 2018).

Windrose analysis has been applied in various airport projects globally, often as a preliminary

step in master planning (Ashford et al., 2011). Recent studies highlight the integration of

programming and statistical methods in enhancing wind analysis for decision-making (Akanwa

& Nnadi, 2020). Moreover, ICAO (2016) and FAA (2019) guidelines underscore the

importance of maintaining crosswind limits within aircraft operational tolerance.

Despite advancements, there remains a gap in the accessibility of flexible, open-source tools

that integrate visualization, analysis, and reporting of wind data for runway planning. This

study bridges that gap by introducing a GUI-based Python application tailored for both

academic and professional use in transportation engineering.

3. Methodology

3.1 Data Collection

Historical wind data was generated and randomized for testing purposes, simulating real

meteorological datasets. Typically, such data would be sourced from meteorological agencies,

airports, or weather stations, including hourly or daily wind speed and direction records

spanning at least 10 years (FAA, 2019).

3.2 Software Development

The windrose software was developed using Python (Tkinter, Matplotlib, Pandas, and

Windrose libraries). The system comprises three main modules:

• Data Import Module: Accepts CSV datasets of wind speed and direction.

• Windrose Visualization Module: Generates windrose plots and overlays the preferred

runway alignment.

• Export Module: Allows export of plots as PDF, PNG, or JPG.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 48

Figure 3.1: The developed Windrose Application

The python computer code is given below:

import tkinter as tk

from tkinter import ttk, filedialog, messagebox

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from windrose import WindroseAxes

from matplotlib.figure import Figure

class WindroseRunwayApp:

 def __init__(self, root):

 self.root = root

 self.root.title("Windrose Runway Tool with Generator")

 self.root.geometry("900x650")

 self.notebook = ttk.Notebook(root)

 self.notebook.pack(expand=True, fill='both')

 # Create tabs

 self.windrose_tab = tk.Frame(self.notebook)

 self.generator_tab = tk.Frame(self.notebook)

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 49

 self.notebook.add(self.windrose_tab, text="Windrose & Runway")

 self.notebook.add(self.generator_tab, text="CSV Generator")

 # Setup both tabs

 self.setup_windrose_tab()

 self.setup_generator_tab()

 def setup_windrose_tab(self):

 frame = self.windrose_tab

 tk.Label(frame, text="Windrose and Runway Orientation Tool", font=("Arial",

16)).pack(pady=10)

 # Buttons

 btn_frame = tk.Frame(frame)

 btn_frame.pack(pady=5)

 tk.Button(btn_frame, text="Load Wind Data CSV",

command=self.load_data).grid(row=0, column=0, padx=5)

 self.plot_btn = tk.Button(btn_frame, text="Plot Windrose", command=self.plot_windrose,

state=tk.DISABLED)

 self.plot_btn.grid(row=0, column=1, padx=5)

 self.export_png_btn = tk.Button(btn_frame, text="Export as PNG", command=lambda:

self.export_plot("png"), state=tk.DISABLED)

 self.export_png_btn.grid(row=0, column=2, padx=5)

 self.export_jpg_btn = tk.Button(btn_frame, text="Export as JPG", command=lambda:

self.export_plot("jpg"), state=tk.DISABLED)

 self.export_jpg_btn.grid(row=0, column=3, padx=5)

 self.export_pdf_btn = tk.Button(btn_frame, text="Export as PDF", command=lambda:

self.export_plot("pdf"), state=tk.DISABLED)

 self.export_pdf_btn.grid(row=0, column=4, padx=5)

 # Plot area

 self.canvas = None

 self.figure = None

 self.runway_label = tk.Label(frame, text="", font=("Arial", 12))

 self.runway_label.pack(pady=10)

 # Notes

 notes = (

 "ℹ️ Notes on Runway Selection:\n"

 "• The most frequent wind direction is used to determine the ideal runway heading.\n"

 "• Runways are named based on their compass heading (rounded to nearest 10° and

divided by 10).\n"

 " For example, a heading of 90° = Runway 09. The opposite direction (270°) = Runway

27.\n"

 "• Aircraft take off and land into the wind to improve lift and reduce takeoff roll.\n"

 "• The arrow on the windrose points to the dominant wind direction (preferred runway

heading)."

)

 tk.Label(frame, text=notes, font=("Arial", 10), justify="left", wraplength=800,

fg="blue").pack(pady=10)

 # Credit

 tk.Label(frame, text="Project created by Engr. Dr. Ogbonna Nnamdi", font=("Arial", 10),

fg="gray").pack(side="bottom", pady=5)

 self.df = None

 def load_data(self):

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 50

 file_path = filedialog.askopenfilename(filetypes=[("CSV files", "*.csv")])

 if file_path:

 try:

 self.df = pd.read_csv(file_path)

 if 'direction' not in self.df.columns or 'speed' not in self.df.columns:

 messagebox.showerror("Error", "CSV must contain 'direction' and 'speed'

columns.")

 return

 self.plot_btn.config(state=tk.NORMAL)

 messagebox.showinfo("Success", "Data loaded successfully.")

 except Exception as e:

 messagebox.showerror("Error", str(e))

 def plot_windrose(self):

 if self.df is not None:

 wind_dir = self.df['direction']

 wind_speed = self.df['speed']

 # Determine dominant wind direction

 self.mode_direction = wind_dir.mode()[0]

 heading = int(round(self.mode_direction / 10.0)) % 36

 reciprocal = (heading + 18) % 36

 self.runway_text = f"Runway {heading:02}/{reciprocal:02}"

 # Create figure

 self.figure = plt.Figure(figsize=(5, 5), dpi=100)

 ax = WindroseAxes(self.figure, [0.1, 0.1, 0.8, 0.8])

 self.figure.add_axes(ax)

 ax.bar(wind_dir, wind_speed, normed=True, opening=0.8, edgecolor='white')

 ax.set_title("Windrose Diagram", fontsize=14)

 ax.set_legend()

 # Add arrow pointing to dominant wind direction

 arrow_dir_rad = np.deg2rad(self.mode_direction)

 ax.annotate(

 self.runway_text,

 xy=(arrow_dir_rad, 100),

 xytext=(arrow_dir_rad, 130),

 textcoords='data',

 ha='center',

 color='red',

 fontsize=10,

 arrowprops=dict(arrowstyle="->", color='red', lw=2)

)

 # Embed in Tkinter

 if self.canvas:

 self.canvas.get_tk_widget().destroy()

 self.canvas = FigureCanvasTkAgg(self.figure, master=self.windrose_tab)

 self.canvas.draw()

 self.canvas.get_tk_widget().pack(pady=10)

 # Show runway suggestion

 self.suggest_runway()

 self.export_png_btn.config(state=tk.NORMAL)

 self.export_jpg_btn.config(state=tk.NORMAL)

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 51

 self.export_pdf_btn.config(state=tk.NORMAL)

 else:

 messagebox.showerror("Error", "No data loaded.")

 def suggest_runway(self):

 heading = int(round(self.mode_direction / 10.0)) % 36

 reciprocal = (heading + 18) % 36

 suggestion = f" Preferred Runway: {heading:02}/{reciprocal:02} (Wind Dir:

{self.mode_direction}°)"

 self.runway_label.config(text=suggestion)

 def export_plot(self, file_type):

 if self.figure:

 file_path = filedialog.asksaveasfilename(defaultextension=f".{file_type}",

 filetypes=[(f"{file_type.upper()} files", f"*.{file_type}")])

 if file_path:

 self.figure.savefig(file_path, format=file_type)

 messagebox.showinfo("Exported", f"Plot saved as {file_path}")

 def setup_generator_tab(self):

 frame = self.generator_tab

 tk.Label(frame, text="Random Wind Data CSV Generator", font=("Arial",

16)).pack(pady=10)

 row_frame = tk.Frame(frame)

 row_frame.pack(pady=5)

 tk.Label(row_frame, text="Number of rows: ", font=("Arial", 12)).grid(row=0,

column=0)

 self.rows_entry = tk.Entry(row_frame, width=10)

 self.rows_entry.insert(0, "500")

 self.rows_entry.grid(row=0, column=1)

 tk.Button(frame, text="Generate and Save CSV",

command=self.generate_csv).pack(pady=20)

 info = (

 " This tool generates synthetic wind data for testing.\n"

 "• Direction: random 0°–360° in 5° steps\n"

 "• Speed: random 1.0–12.0 m/s\n"

 "• Save and use the file in the Windrose tab."

)

 tk.Label(frame, text=info, font=("Arial", 10), justify="left", wraplength=700,

fg="green").pack(pady=10)

 tk.Label(frame, text="Project created by Engr. Samuel", font=("Arial", 10),

fg="gray").pack(side="bottom", pady=5)

 def generate_csv(self):

 try:

 num_rows = int(self.rows_entry.get())

 if num_rows<= 0:

 raise ValueError

 np.random.seed(42)

 directions = np.random.choice(np.arange(0, 361, 5), size=num_rows)

 speeds = np.round(np.random.uniform(1.0, 12.0, size=num_rows), 1)

 df = pd.DataFrame({'direction': directions, 'speed': speeds})

 file_path = filedialog.asksaveasfilename(defaultextension=".csv",

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 52

 filetypes=[("CSV files", "*.csv")],

 title="Save CSV File As")

 if file_path:

 df.to_csv(file_path, index=False)

 messagebox.showinfo("Success", f"CSV file saved:\n{file_path}")

 except ValueError:

 messagebox.showerror("Invalid Input", "Please enter a valid number of rows.")

Run the app

if __name__ == "__main__":

 root = tk.Tk()

 app = WindroseRunwayApp(root)

 root.mainloop()

3.3 Runway Orientation Algorithm

The algorithm calculates crosswind components for candidate runway headings using:

𝑉𝑐𝑟𝑜𝑠𝑠 = 𝑉 ⋅ 𝑠𝑖𝑛⁡(𝜃 − 𝛼)⁡
where:

• 𝑉⁡ = ⁡𝑤𝑖𝑛𝑑⁡𝑠𝑝𝑒𝑒𝑑,
• 𝜃⁡ = ⁡𝑤𝑖𝑛𝑑⁡𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,
• 𝛼⁡ = ⁡𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒⁡𝑟𝑢𝑛𝑤𝑎𝑦⁡ℎ𝑒𝑎𝑑𝑖𝑛𝑔.

Runway headings are iterated at 10° increments to determine the alignment minimizing

crosswind exceedances. The preferred runway is then reported in dual headings (e.g., 10/28)

as per ICAO standards.

The Unified Modeling Language (UML) diagram for the program is shown in figure 3.1

Figure 3.1: UML use case diagram

From figure 3.1, the following are true:

i.) WindroseApp → The main GUI controller using Tkinter.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 53

ii.) WindDataProcessor → Handles wind data loading, processing, orientation calculations.

iii.) WindrosePlotter → Responsible for visualization (windrose& overlay runway).

Use cases: The user can upload data, generate results, visualize windrose, and read explanatory

notes.

3.4 Visualization of Preferred Runway

The preferred runway heading is graphically superimposed on the windrose plot, aiding user

interpretation. A separate Notes Tab clarifies why the runway was chosen and explains the

naming convention.

4. Results and Discussion

4.1 Software Output

The developed software successfully:

1. Accepted and processed large wind datasets.

2. Generated windrose plots displaying wind direction and intensity.

3. Identified optimal runway headings consistent with prevailing wind patterns.

4. Exported graphical results with credits to the developer.

4.2 Case Example

For a sample dataset, the software recommended a runway orientation of 10/28, aligning with

predominant northeast–southwest wind trends. This result illustrates the tool’s ability to

replicate professional wind analysis outcomes.

4.3 Implications for Transportation Engineering

The application enhances decision-making in airport planning by:

• Improving safety margins through reduced crosswind exposure.

• Supporting compliance with ICAO and FAA standards.

• Providing a low-cost, customizable alternative to proprietary software.

5. Summary and Conclusion

This paper presented the application of windrose analysis in optimizing runway orientation

using a Python-based software tool. By integrating data analysis, visualization, and reporting,

the tool provides engineers and planners with a reliable system for runway design decisions.

The results confirm that aligning runways with prevailing winds reduces crosswind risks and

enhances operational efficiency. Future improvements may involve integrating real

meteorological APIs and extending the tool to multi-runway airport configurations.

http://www.iiardjournals.org/

International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 11. No. 11 2025 www.iiardjournals.org online version

IIARD – International Institute of Academic Research and Development

Page 54

References

Ashford, N., & Wright, P. H. (2011). Airport Engineering: Planning, Design and Development

of 21st Century Airports. John Wiley & Sons.

FAA (2019). Airport Design Advisory Circular (AC 150/5300-13A). Federal Aviation

Administration, Washington, DC.

Horonjeff, R., McKelvey, F. X., Sproule, W. J., & Young, S. B. (2010). Planning and Design

of Airports. McGraw-Hill.

ICAO (2016). Aerodrome Design Manual, Part 1: Runways. International Civil Aviation

Organization, Montreal.

Neufville, R., &Odoni, A. R. (2013). Airport Systems: Planning, Design, and Management.

McGraw-Hill.

Stolzer, A., Halford, C., & Goglia, J. (2018). Safety Management Systems in Aviation.

Routledge.

Akanwa, A. O., & Nnadi, C. (2020). Application of computational tools in wind data analysis

for airport planning. Nigerian Journal of Transportation Engineering, 14(2), 45–57.

http://www.iiardjournals.org/

